Abstract

Abstract Growth of a potassium dihydrogen phosphate (KDP) crystal from its aqueous solution has been considered under forced convection conditions. The KDP crystal is grown in a conventional top hanging geometry. Forced convection conditions are created by rotating the crystal about a vertical axis. The rotational RPM is varied in a cycle, creating an accelerated rotation (AR) paradigm. The effect of varying the rotational RPM on the concentration field around the crystal was investigated. Mach–Zehnder interferometry was adopted as an optical technique to image the evolving concentration fields. Six different experiments were performed to obtain the specific set of time periods and rotation rates of the acceleration cycle that result in a uniform concentration field around the growing crystal. The Reynolds number, an index of the strength of forced convection, was optimized through the experiments. The optimized parameters of the accelerated rotation cycle were found to be as follows: maximum rotation rate of 32 RPM, spin up period=40 s, spin down period=40 s, steady period=40 s, and stationary period=40 s. The parametric study further revealed that concentration was highly sensitive to the maximum rotation rate adopted during the AR cycle. It did not depend crucially on the time periods that could be varied by as much as ±25% around the respective average values. Finally, a KDP crystal was grown using the optimized forced convection parameters and the crystal quality was found to be good.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.