Abstract

One of the new methods of studying the structure and dimensions of biological membranes is based on the Förster's nonradiative energy transfer between special molecules, the so-called ‘membrane fluorescent probes’. Further development of the approach is presented in this article. It consists of the combined use of the time-resolved and steady-state fluorescence data with subsequent computer simulation of the energy transfer in membranes. Anthracene as an energy donor, and 4- p-(dimethylamino)styryl- N-dodecylpyridinium (DSP-12) or 4-dimethylaminochalcone (DMC) as energy acceptors were bound with artificial phospholipid membrane vesicles (‘liposomes’). The synchrotron radiation was used as an impulse source for the excitation light. The steady-state fluorescence data permit the area of possible probe localization in membranes to be distinguished, while the kinetic data allow them to be narrowed significantly. There is a good agreement between the obtained localization and our present-day knowledge of lipid bilayer structure. The accuracy of the method is ca. several Angströms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.