Abstract

The development of improved equipment for measuring soil water content has created the need for a better understanding of soil water drainage and movement. Without this understanding, it is impossible to know if an observed decrease in soil water content at a particular depth is due to evapotranspiration and/or continual drainage. This study was designed to determine the length of time for different soil depths of a Florida Candler fine sand to reach field capacity. A field site with no vegetation on it was saturated with water and covered with a plastic tarp to prevent evaporation. At 6- to 24-hour intervals, soil water content was measured gravimetrically in the top 15 cm (6 inches) and with the neutron probe from 30 to 150 cm (12 to 59 inches). The 15-cm depth reached field capacity after one day, but it took 4 days for the 30- to 150-cm depths to reach field capacity because of rewetting by water draining form higher horizons. The time required for drainage to stop must be considered when evaluating changes in soil water status at a particular depth. This is important for distinguishing between plant water uptake and drainage for different soil layers.Soil water characteristic curves of undisturbed soil samples, bulkdensity, porosity, and field capacity in situ were also determined for this soil. Field capacity values found in situ were compared to those found using the pressure plate technique. Laboratory values were higher than field values because the laboratory data were closer to hydrostatic conditions than the field data and the degree of saturation provided during wetting of the cores was higher in the laboratory. Water was not readily retained in Candler fine sand because the soil was very porous, infiltration rates were high, drainage was rapid, and water storage capacity was limited. Using field measurements, field capacity values of soil at different depths ranged from 4.8% to 6.2% volume for Candler fine sand. These are considered to be low values when compared to other types of soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call