Abstract

A standard sample mixture containing thirty-seven fatty acid methyl esters (FAMEs) was measured by femtosecond laser ionization mass spectrometry. FAME molecules with double bonds were efficiently ionized via resonance-enhanced two-photon ionization by absorbing the first photon at 206 nm at the edge of the absorption band of the π→π* transition and subsequently ionized by absorbing the second photon at 257 nm. The intensity of the molecular radical ion was enhanced significantly using this two-color ionization scheme, which minimizes the excess energy in the ionized state, when compared with electron ionization mass spectrometry and vacuum-ultraviolet photoionization mass spectrometry. This approach was then used for the reliable identification of FAMEs contained in an actual sample of biofuel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call