Abstract

F(2)-isoprostanes are a unique class of prostaglandin-like compounds formed in vivo, which have been established as biomarkers of oxidative stress. Accurate analysis has been challenging due to lack of specificity for the isoforms of isoprostanes and lengthy sample preparation procedures to enable trace quantitative analysis. A quantitative analytical method was developed for the determination of F(2)-isoprostanes in rat and hamster urine by online solid phase extraction (SPE) coupled with liquid chromatography and tandem mass spectrometry (LC-MS/MS). The online SPE LC-MS/MS procedure has significant advantages over alternative methods with respect to specificity, sensitivity, simplicity, and speed. The assay enables the detection of iPF(2alpha)-III, iPF(2alpha)-IV, and iPF(2alpha)-VI over a linear dynamic range of 0.1-50 ng/mL in rat urine samples. This range covers the basal levels of these F(2)-isoprostanes. The limit of quantitation (LOQ) for the standard isoprostanes was about 0.3 ng/mL. The average recoveries ranged from 73 to 115% depending upon the individual F(2)-isoprostane isomers in rat urine. Additionally, the method was used to determine increases of endogenous urine iPF(2alpha)-VI and iPF(2alpha)-III in hamsters challenged with either low-fat or high-fat diets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.