Abstract
An environmentally friendly method based on hollow-fibre liquid-phase microextraction (HF-LPME) was developed for the extraction of selected estrogenic compounds (i.e. four natural sexual hormones: estrone, 17β-estradiol, 17α-estradiol and estriol; two exoestrogens: 17α-ethynylestradiol and 2-methoxyestradiol; two synthetic stilbenes: dienestrol and hexestrol; and five resorcylic acid lactones: zearalenone, α-zearalanol, β-zearalanol, α-zearalenol and β-zearalenol), from whole cow and semi-skimmed goat milk and whole natural yogurt. After the optimization of the sample preparation procedure, spiked extracts were derivatized to their trimethylsilyl products using N,O-bis(trimethylsilyl)trifluoroacetamide reagent and then analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS). Once optimum extraction conditions were established (protein precipitation with acetonitrile, extraction and the back-extraction in acetonitrile following the HF-LPME procedure), the method was validated and the calibration range, precision and accuracy were studied. The RSD values for the intra- and inter-day precision of the peak areas were in the range 0.65-9.69 and 1.00-11.47%, respectively. The determination coefficients were higher than 0.991 for method calibration curves while LOD and LOQ values were between 0.06-2.55 and 0.16-6.11μg/L for whole cow milk, 0.04-1.70 and 0.11-4.86μg/L for semi-skimmed goat milk and 0.07-3.73 and 0.23-9.81μg/L for natural yogurt, respectively. Finally, the accuracy and precision of the method were evaluated, obtaining a value in the range 84 81-119% and RSD values lower than 20% in all cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.