Abstract

We used topographic and structural data and very limited age control to perform quantitative morphometric analyses and to determine relative ages of escarpments bounded by late Cenozoic normal faults in the Galilee, Israel. The Galilee is an extensional zone composed of a series of uplifted and tilted blocks forming large escarpments built mainly of carbonate rocks. Two parameters used to discriminate tectonic stages are the ratio between the height of the escarpment and the total stratigraphic displacement ( L ) and the degree of concavity of escarpment slopes relative to a reference slope. The only dated reference slope is Mount Tur9an, ∼300 m high and formed by the Tur9an fault system, which has a total stratigraphic displacement of 625 m. A basalt flow that delimits the age of the Tur9an escarpment is dated to 4.23 ± 0.23 Ma and displaced 300 m, which is identical to the present-day topographic expression of this escarpment. The L value for this escarpment is ∼0.5. The Tur9an fault system was active prior to 4.23 Ma at slow uplift rates that enabled erosion to maintain the gentle slope over which the basalt flowed. Increased offset rates following the basalt extrusion led to the formation of the escarpment. The preservation of the basalt at the top of the escarpment indicates that erosional lowering of the upper surface of the Tur9an block has been minor since its formation. The L values indicate two stages of uplift; an early stage during which offset rates were probably low enough that they did not form topography, and a later stage that formed topography, which is preserved. The timing of the change in displacement rates from a slow continuous stage to a fast, topography-forming stage was determined by comparing the shape of the dated slope of Tur9an to that of other slopes. We conclude the following: (1) generally, the topographic profiles of different parts of each individual escarpment have similar shapes indicating similar ages; (2) escarpments having slopes that are more concave or convex than the reference Tur9an escarpment are older or younger than 4 Ma, respectively; and (3) the Galilee escarpments did not form simultaneously. A few escarpments were already major morphologic features by the early to middle Pliocene, whereas the rest formed during the late Pliocene. Morphometric analysis is a useful method for studying the geologic history of a landscape controlled by normal fault uplift and characterized by the absence of sediment deposition and where carbonate dissolution is the main erosional process. This and similar approaches can be used to discriminate tectonic stages and understand the relationship between tectonic activity and surface processes in other extensional regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call