Abstract

Abstract This study was motivated by the fact that differential scanning calorimetry (DSC)/differential thermal analysis (DTA) results in literature showed significant exothermic peaks while in overall, pyrolysis is an endothermic phenomenon. The specific heat of the decomposing tires has been determined with a new methodology: instead of assuming constant char properties throughout pyrolysis, the specific heat of evolving solids (char) was evaluated with increasing temperature and conversion. Measured specific heat values were observed to increase until pyrolysis was triggered at 250°C. Then, the specific heat of the solids decreased continuously until 400°C at which point they started to increase. This unexpected trend pointed out that the exothermic peak observed with DSC is an artefact generated by the control system of the apparatus. To overcome this limitation, the energy balance was performed over industrial data and the newly found heat capacity values. The enthalpy of pyrolysis was found to have a term dependent on the weight loss derivative, with a constant value of 410 kJ/kg tires. Two other terms for the enthalpy of pyrolysis have been identified, which were independent of weight loss. The first one is believed to correspond to the sulphur cross-link breakage at low temperature (65 kJ/kg), while the second one, at the final stage of pyrolysis, should correspond to charring reactions approaching the thermodynamic equilibrium (75 kJ/kg). Ultimately, this work proposes a new methodology to determine the enthalpy of pyrolysis with larger scale experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.