Abstract

Purpose. To calculate the temperature and velocity of nickel and aluminum oxide particles in the supersonic flow in the low-pressure cold gas-dynamic spraying nozzle. To investigate the effect of gas parameters at the nozzle inlet, in particular temperature and pressure, on the velocity and temperature of particles at the nozzle outlet.
 Research methods. The calculation of the temperature-velocity characteristics of the powder particles is performed after determining the parameters of the gas flow in the supersonic nozzle channel using well known gas-dynamic dependencies. The initial data for the calculation are the following: the geometry of the nozzle, the temperature and pressure of the gas (air) at the nozzle inlet. The density of the material from which particles are obtained, as well as their diameter, were taken into account in the calculation of the energy parameters. Nickel particles with a diameter of 25 µm and aluminum oxide particles with a diameter of 22 µm were used.
 Results. Based on the calculations results, graphs of changes in the velocities and temperatures of the particles of the investigated powders, as well as working gas, in the channel of the low-pressure cold gas-dynamic spraying supersonic nozzle were developed. The dependences of the temperature-velocity parameters of the particles at the nozzle exit in the range of initial values of temperature at the nozzle inlet from 300 to 600 C° and pressure from 0.6 to 1.0 MPa were also developed.
 Scientific novelty. The influence of the initial parameters of the gas at the nozzle inlet in a wide range of values on the temperature and velocity of nickel and aluminum oxide particles during the low-pressure cold gas-dynamic spraying is shown.
 Practical value. The obtained results can be used to determine rational spraying parameters in the development of technological processes of deposition of protective and restorative coatings from Ni+Al2O3 powder mixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call