Abstract

Quantification of energetics and kinetics for the band-edge exciton states of quantum dots and the long-lived dark state is important for better understanding of the underlying mechanism for single-particle intermittency and ensemble fluorescence intensity decay. Based on a multistate diffusion-reaction model by extending our previous studies, we analyze experimental data from ensemble measurements and fluorescence intermittency of single quantum dots and determine important molecular-based quantities such as Stokes shift, free energy gap, activation energy, reorganization energy, and other kinetic parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call