Abstract

In a microwave argon plasma, the electron-impact population transfers between the first four excited states of argon are studied by time-resolved laser pump–probe technique. Metastable atoms in the 1s5 state (in Paschen's notation) are selectively pumped up to the 2p3 state, with a nanosecond pulsed dye laser tuned to the 706 nm argon transition and the temporal response of the densities in the 1s3, 1s4 and 1s5 states are monitored by time-resolved laser diode absorption. The electron density and temperature are also measured by Thomson scattering along the plasma column for different pressures. The rate coefficient measured for the 1s3 to 1s2 state transfer, for which only rough estimations exist in the literature is found to be 9 × 10−13 m3 s−1, almost five times larger than the value commonly assumed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.