Abstract
AbstractThis paper presents a new method for the measurement on core samples of their electrical resistivity, its anisotropy and heterogeneity. The equipment used has been developed in the field laboratory of the German Continental Deep Drilling program KTB in the north‐east of Bavaria on the western rim of the Bohemian Massif. The apparatus measures the resistivity at a fixed frequency as a function of the drill core azimuth and along the core by moving point electrode configurations.From these azimuth and depth dependences, mean values of resistivity and additional information about its anisotropy and heterogeneity are determined. Geometrical averaging is used, because the resistivity data follows a log normal distribution. The quantitative parameters ‘azimuth factor’, corresponding to horizontal anisotropy, and ‘heterogeneity factor’ are introduced.The depth logs of resistivity, azimuth factor and heterogeneity factor, measured on cores obtained from the KTB main drill hole (gneisses and amphibolites) at depths between 4150 m and 8080 m are presented. The geometrically averaged mean values of resistivity of gneisses and amphibolites are in the same range (≅ 103Ωm). The resistivities tend to decrease with depth. The stress release of the drill cores during recovery produces microcracks which may partially account for this effect.Reduced resistivities (down to 150 Ωm) within an amphibolite core correlate with an alteration zone. One sample of this core displays alteration from fresh to completely altered. This sample is also electrically heterogeneous (heterogeneity factor ≅ 2). Other samples with uniform low alteration are more homogeneous heterogeneity factor ≅ 1.4).In general, higher anisotropies are observed in gneisses (mean azimuth factor 2.8), lower anisotropies in amphibolites (mean azimuth factor 1.3). Examples of isotropic and homogeneous samples, as well as anisotropic and heterogeneous samples are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.