Abstract

Conductivity and Hall-effect measurements were performed on single-crystallinep-doped germanium, electrically driven into low-temperature avalanche breakdown via impurity impact ionization. The electric transport properties were determined as a function of the applied electric field in the pre- and post-breakdown regime. The characteristic field dependence of the carrier density, mobility, and drift velocity was found to be reflected in smooth variations of the integral current flow. The breakdown mechanism was demonstrated to involve a mobility which sensitively depends upon the density of the mobile charge carriers. Our experimental findings are qualitatively explained by simple model approaches developed from established breakdown theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.