Abstract

In addition to the electric field E(r), the associated magnetic field H(r) and current density J(r) characterize any electromagnetic device, providing insight into antenna coupling and mutual impedance. We demonstrate the optical analogue of the radio frequency vector network analyzer implemented in interferometric homodyne scattering-type scanning near-field optical microscopy for obtaining E(r), H(r), and J(r). The approach is generally applicable and demonstrated for the case of a linear coupled-dipole antenna in the midinfrared spectral region. The determination of the underlying 3D vector electric near-field distribution E(r) with nanometer spatial resolution and full phase and amplitude information is enabled by the design of probe tips with selectivity with respect to E(∥) and E(⊥) fabricated by focused ion-beam milling and nano-chemical-vapor-deposition methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.