Abstract

We describe a MWCNT-based method for the solid-phase extraction of eight pesticides from environmental water samples. The analytes are extracted from 100 mL samples at pH 5.0 (containing 5 mmol L−1 of KCl) by passing the solution through a column filled with 20 mg of multiwalled carbon nanotubes. Following elution, the pesticides were determined by LC and electrospray ionization hybrid quadrupole linear ion trap MS. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. In addition, an information-dependent acquisition experiment was performed for unequivocal confirmation of positive findings. Matrix effect was not found in real waters and therefore the quantitation was carried out with calibration graphs built with solvent based standards. Except for cymoxanil, the detection and quantitation limits in surface waters are in the range from 0.3 to 9.5 ng L−1 and 1.6 to 45.2 ng L−1, respectively. Recoveries from spiked ultrapure water are ~100 %, except for the most polar pesticides methomyl and cymoxanil. The same behavior is found for real water samples (except for phosalone). The relative standard deviation is <10 % in all cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call