Abstract

AbstractThis paper intends to develop and validate an innovative method to determine the effective thermal conductivity of asphalt concrete considering thermal properties of individual components and volumetric compositions. Three-phase microstructure models (asphalt binder, aggregate, and air void) of asphalt concrete were randomly generated based on aggregate sizes and gradations. A finite-element (FE) model was developed to calculate the effective thermal conductivity of asphalt concrete by applying a steady heat transfer process. A multiscale simulation approach was used to consider the effect of different-sized aggregates at various length scales using a hierarchical framework that reduces computational cost. The prediction results were validated with experiment data and showed better accuracy than the results predicted from other analytical models. The influences of air void content and distribution, coarse aggregate content, aspect ratio of aggregate, asphalt binder with conductive and insulation a...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call