Abstract

Protein charge ladders are an effective tool for measuring protein charge and studying electrostatic interactions. However, previous analyses have neglected the effects of charge regulation, the alteration in the extent of amino acid ionization associated with differences between the pH at the protein surface and in the bulk solution. Experimental data were obtained with charge ladders constructed from bovine carbonic anhydrase. The protein charge for each element in the ladder was calculated from the protein electrophoretic mobility as measured by capillary electrophoresis using the hindrance factor for a hard sphere with equivalent hydrodynamic radius. The protein charge was also evaluated theoretically from the amino acid sequence by assuming a Boltzmann distribution in the hydrogen ion concentration. The calculations were in excellent agreement with the data, demonstrating the importance of charge regulation on the net protein charge. These results have important implications for the use of charge ladders to evaluate effective protein charge in solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call