Abstract

Neural field theory insights are used to derive effective brain connectivity matrices from the functional connectivity matrix defined by activity covariances. The symmetric case is exactly solved for a resting state system driven by white noise, in which strengths of connections, often termed effective connectivities, are inferred from functional data; these include strengths of connections that are underestimated or not detected by anatomical imaging. Proximity to criticality is calculated and found to be consistent with estimates obtainable from other methods. Links between anatomical, effective, and functional connectivity and resting state activity are quantified, with applicability to other complex networks. Proof-of-principle results are illustrated using published experimental data on anatomical connectivity and resting state functional connectivity. In particular, it is shown that functional connection matrices can be used to uncover the existence and strength of connections that are missed from anatomical connection matrices, including interhemispheric connections that are difficult to track with techniques such as diffusion spectrum imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.