Abstract

With the increased demand for application of sustainable materials and lightweight structures, the sheet metal forming industry is forced to push existing materials to the limits. One area where this is particular difficult is when it comes to assessing the formability limit for sheet edges. For decades, the ISO-16630 Hole Expansion Test (HET) has been the industry standard for expressing the edge formability of sheet metals through the Hole Expansion Ratio (HER). However, in recent years, this test has been criticized for its high scatter in results for repeated experiments. This scatter has been suspected to be caused by the operator-reliant post-processing of the test, or variations in the cutting conditions for the different test specimens. This study investigates the impact of shifting the evaluation point of the test from the through-thickness crack to the onset of surface failure on the reported scatter, as well as performs inverse modeling of the Hole Expansion Test to obtain an edge limit strain value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.