Abstract

By contrast with static fracture toughness determination, the methodology for dynamic fracture toughness characterization is not yet standardized and appropriate approaches must be devised. The accurate determination of the dynamic stress intensity factors must take into account inertial effects. Most methods for dynamic fracture toughness measurement are experimentally complex. However, dynamic fracture toughness determination using strain measurement is extremely attractive in terms of experimental simplicity. In this study, dynamic fracture toughness tests using strain measurement are performed. High rate tension and charpy impact tests are carried out for titanium alloy, maraging steel and Al alloys. In the case of evaluating the dynamic fracture toughness using high rate tension and charpy impact tests, load or energy methods are used commonly. The consideration about inertial effects is essential, because load or energy methods are influenced by inertia. In contrast, if the position for optimum response of strain is provided, dynamic fracture toughness evaluation using strain near crack tip is more accurate. To obtain the position for optimum response of strain, a number of gages were attached at angles of 60°. Reliability for experimental results is evaluated by Weibull analysis. The method presented in this paper is easy to implement in a laboratory and it provides accurate results compared to results from load or energy methods influenced by inertia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call