Abstract

To understand the effects of increasing temperature and loading rate on the flexural tensile strength of Laurentian granite, dynamic flexural tensile strength experiments were carried out by means of a semi-circular bend specimen with a modified split Hopkinson pressure bar system. The tests were performed at different loading rates, specimens were treated from room temperature up to 850 °C, and a high-speed camera was utilized to monitor the failure process of the specimen. For samples in the same temperature group, a loading rate dependence of the flexural tensile strength was observed; it increased consistently with the increase of loading rate. Temperature effects on rock mechanical properties were investigated from the microscopic viewpoint, and the dynamic flexural tensile strength decreased with the treatment temperature. A formula relating dynamic flexural tensile strength to loading rate and temperature is presented to quantify the results. It was found that the change regulation of the dynamic flexural tensile strength of rock is very similar to that of its crack growth along with the increase of loading rate, which indicates that the essence of rock failure is the initiation and propagation of the internal cracks. Compared with our earlier work on dynamic tensile tests using the Brazilian test, it was observed that the flexural tensile strength is higher than the tensile strength. Non-local failure theory can be adopted to explain this discrepancy at low temperature conditions, but it is no longer effective at high temperatures. Under high loading rates, rock failure is initiated at the centre of the half circular disc, and finally it is separated completely into two equal parts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.