Abstract
Here, we report a single-point detection method for the determination of dynamic surface conditions inside microfluidic channels. The proposed method is based on monitoring fluorescence amplitude as a function of the convolution of a laser beam with segmented flow consisting of two immiscible liquids, one containing fluorescent dye. The fluorescence amplitude is determined by the flow rate and the droplet shape, which is affected by the channel surface properties. We modeled the interaction of a droplet and a laser beam via computer-aided design software, using the laser beam location in relation to the droplet shape as a parameter. The method was applied to fused silica capillaries with both unmodified and modified surfaces, with segmented flow exhibiting water contact angles of ≈ 30° and ≈ 100°, respectively. The method allows discrimination between hydrophillic and hydrophobic surfaces, as well as the quality of the treatment. The results were verified using fluorescence imaging of the droplets via a stroboscopic technique. We also applied this method to the analysis of microfabricated channels with non-circular cross sections. We demonstrated that the technique enables the determination of the hydrophobicity of channel surfaces, a crucial property required for the generation of segmented flow or emulsions for applications such as digital PCR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.