Abstract

A new approach has been developed to determine the dynamic amplification factors of railways. This approach employs a traditional multi-body dynamic model of vehicle–track interaction and a 3D explicit finite element model of wheel–rail rolling contact to treat the low- and high-frequency dynamics, respectively. Excitations are considered by contact surface unevenness and more specifically, by the power spectrum density of track irregularity for the low-frequency analysis and by the critical wheel flat, weld, and rail corrugation for the high frequency. For the 40-tonne axle load heavy haul railway simulated in this work, it has been found that the optimum fastening stiffness should be 150–200 MN/m; the dynamic amplification factors of the wheel–rail contact, fastening, and ballast forces are 1.94, 2.0, and 1.67, respectively, if the fastening stiffness of 200 MN/m is applied. Finally, new dynamic amplification factor formulae that include key parameters such as the fastening stiffness, speed, and axle load are proposed for the heavy haul railway design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.