Abstract

PurposeThe purpose of this study was to determine dose enhancement (DE) and the possible clinical benefits associated with the inclusion of gold nanoparticles (AuNPs) in cancer cells irradiated by either an 192Ir brachytherapy source or a Xoft® Axxent® Electronic (eBx™) Brachytherapy.Patients and methodsBrachytherapy DE caused by AuNPs is investigated using two methods, namely 192Ir and eBx™ Brachytherapy. The second method, which was recently introduced clinically, operates at ~50 kV, which is also the optimal beam energy for DE. In this in vitro study, two cancer cell lines, lung (A549) and prostate (DU145), were used. Cells were incubated with 1 mM (2% w/w) concentration of AuNPs of ~15 nm in size. The control groups were exposed to a range of doses from 0 (control) to 6 Gy, with eBx™ and 192Ir sources separately. A clonogenic assay was conducted to determine cell survival curves.ResultsHigh dose enhancement factor (DEF) values were achieved in treated groups with low concentration of AuNPs with the 50 kV energy associated with the eBx™. The DE levels in eBx™ for Du145 and A549 cells were found to be 2.90 and 2.06, respectively. The results showed DEFs measured for the same cell lines using 192Ir brachytherapy to be 1.67 and 1.54 for Du145 and A549 cancer cells, respectively. This clearly indicates that much higher DE values are obtained in the case of eBx™ X-ray brachytherapy compared to 192Ir gamma brachytherapy.ConclusionThe higher DE values obtained with eBx™ compared to 192Ir brachytherapy can be attributed to the lower average energy of the former and being closer to the optimal energy for DE. This could potentially be utilized by medical practitioners and clinicians to achieve the same tumor control with a significantly lower dose from the eBx™ compared to the 192Ir brachytherapy treatment, thus bringing huge benefits to the brachytherapy-treated patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.