Abstract

Abstract Magnetic Particle Spectroscopy (MPS) is a characterization method for investigating the nonlinear properties of magnetic nanoparticles (MNP) using magnetic field strengths in the order of a few tens of millitesla. Its exploitation for particle characterization is of high significance for biomedical applications such as Magnetic Particle Imaging (MPI) and magnetic hyperthermia. Since the dynamic characteristics of MNP are influenced by both the Neel and the Brownian relaxation mechanism, harmonic spectra in MPS measurements are directly linked to ambient influences like temperature or viscosity of the surrounding medium. Experimental data of multiparametric measurements helps one to evaluate and validate mathematical models of dynamic particle magnetization. This contribution deals with the investigation of temperature-dependent harmonic spectra of different commercially available single-core and multi-core particle systems. It is shown, that dominating relaxation mechanisms can be determined from temperature-dependent MPS measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.