Abstract

Cytosine methylation in DNA was determined by an enzyme linked immunosorbent assay (ELISA) with electrochemiluminescence (ECL) detection and employed for the DNA methylation assay of a long and real genomic sample for the first time. The developed method employed an antimethyl cytosine antibody labeled with acetylcholinesterase, which was added to recognize single methylated cytosine in a DNA oligomer. The acetylcholinesterase converted acetylthiocholine (substrate) to thiocholine (product), which was accumulated on a gold electrode surface via gold-thiol binding. This surface accumulated preconcentration made it possible to observe bright and distinctive ECL by applying a potential to the gold electrode in the presence of a tris(2,2-bipyridyl)ruthenium complex luminophore when the analyte DNA contained a methylation region. Methyl-cytosine was measured quantitatively in the 1-100 pmol range, which exhibits sufficiently high sensitivity to achieve real DNA measurements without amplification by a polymerase chain reaction (PCR). The proposed ECL method also exhibited high selectivity for methyl-cytosine against nonmethylated cytosine, guanine, thymine, and adenine nucleotides. Finally, original and methylated DNA samples were clearly distinguished with our method using a real DNA bacteriophage sample (48,502 base pairs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.