Abstract

Attenuated total reflectance Fourier transform infrared spectroscopy was used to detect DNA hybridization on a polystyrene conjugated gold nanoparticle thin film. The gold nanoparticles were synthesized on the surface of poly(ethylenimine) coated polystyrene particles by citrate reduction. Single-stranded DNA was then immobilized on the nanoparticle surface via thiol bonding. Ultraviolet-visible spectrometry was used to monitor the conjugation of the nanoparticles on polystyrene particles and the immobilization of a single-stranded DNA probe. The morphology of the polystyrene-gold nanoparticle thin film was characterized using scanning electron microscopy and showed successful conjugation and immobilization. The infrared spectra obtained from the hybridization showed features of DNA structure and peak shifts at 1657 cm−1 compared to the non-complementary DNA due to changes in hydrogen bonding between N-H and C˭O of complimentary bases pairs. The peaks at 1067, 975, 920, and 859 cm−1, which were shifted to lower wavenumbers in the polystyrene-gold nanoparticle probe and target DNA, indicated hydrogen bonding formation between N-H and N of complimentary base pairs. ATR-FTIR spectroscopy provided simple, fast, and portable label-free detection of target DNA sequence on the polystyrene-gold nanoparticle thin film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.