Abstract

The present study aimed at detecting DNA damage and fragmentation as well as histone acetylation depending on oxidative stress caused by CCl4 intoxication. Also, the protective role of N-acetyl cysteine, a precursor for GSH, in DNA damage is investigated. Sixty rats were used in this study. In order to induce liver toxicity, CCl4 in was dissolved in olive oil (1/1) and injected intraperitoneally as a single dose (2 ml/kg). N-acetyl cysteine application (intraperitoneal, 50 mg/kg/day) was started 3 days prior to CCl4 injection and continued during the experimental period. Control groups were given olive oil and N-acetyl cysteine. After 6 and 72 h of CCl4 injection, blood and liver tissue were taken under ether anesthesia. Nuclear extracts were prepared from liver. Changes in serum AST and ALT activities as well as MDA, TAS, and TOS levels showed that CCl4 caused lipid peroxidation and liver damage. However, lipid peroxidation and liver damage were reduced in the N-acetyl cysteine group. Increased levels in 8-hydroxy-2-deoxy guanosine and histone acetyltransferase activities, decreased histone deacetylase activities, and DNA breakage detected in nuclear extracts showed that CCl4 intoxication induces oxidative stress and apoptosis in rat liver. The results of the present study indicate that N-acetyl cysteine has a protective effect on CCl4-induced DNA damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.