Abstract

A Labyrinth weir is a type of nonlinear weir folded in plan-view, with the ability to pass a large flow at low heads due to an increase in the effective length of the weir crest for a given channel width. The discharge coefficients (Cd) were experimentally determined for both semicircular and triangular labyrinth weirs of varying sidewall angles (α) under free-flow conditions using eight physical models. Dimensional analyses are conducted using the Buckingham π theorem to find the dependent and non-dependent variables. A nonlinear empirical equation was developed using (Statistical Package for the Social Sciences 22) software. The findings show that the discharge coefficient decreases with the increase of headwater to (Ht/P) for both types of labyrinth weir with different plan forms. It is found that the efficiency of the semicircular and triangular labyrinth is higher than linear weir for (Ht/P ≤ 0.45) and decreases with increasing the value of (Ht/P) due to interference of flow between the layers in downstream. The obtained results revealed that the discharge coefficient (Cd) values obtained empirically using multivariable power regression and 5th degree polynomial equations considerably agree with the experimental data, for both of the semicircular and triangular labyrinth weirs. Furthermore, the correlation coefficient R2was (0.9951) and (0.9637) using 5th degree polynomial equation, and their values were (0.9643) and (0.9274) using multivariable power regression equation for both semicircular and triangular labyrinth weir models, respectively. The results in the present study compared quite well with the predicted results of the proposed equations obtained by other investigators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call