Abstract
Dirac operator with eigenvalue-dependent boundary and jump conditions is studied. Uniqueness theorems of the inverse problems from either Weyl function or the spectral data (the sets of eigenvalues and norming constants except for one eigenvalue and corresponding norming constant; two sets of different eigenvalues except for two eigenvalues) are proved. Finally, we investigate two applications of these theorems and obtain analogues of a theorem of Hochstadt-Lieberman and a theorem of Mochizuki-Trooshin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.