Abstract

Electrodiffusion properties of chromium-substituted lithium-manganese spinel Li x Mn1.95Cr0.05O4 intended for application as a cathodic material for lithium-ion batteries is studied. The studies are carried out at 25°C using the electrochemical impedance spectroscopy technique in alkyl-carbonate electrolyte. In the analysis of impedance spectra, the apparatus of electric equivalent circuits was employed to determine surface layer resistances, double electric layer capacitance, differential intercalation capacity, chemical diffusion coefficient D of lithium, and other electrode characteristics. The issues of substantiating the choice of electric equivalent circuits and correct interpretation of their elements are discussed; dependences of the calculated model parameters on the electrode potential (lithium concentration in the electrode) are analyzed. The chemical diffusion coefficient of Li+ in Li x Mn1.95Cr0.05O4 found on the basis of the impedance spectra is in the range of 10−9 to 10−12 cm2/s under electrode potential variation in the range of 3.5–4.5 V (vs. Li/Li+) with a pronounced minimum of D in the middle of this range. Repeated cycling of the electrode is accompanied by a gradual increase in resistance of the solid-electrolyte interphase (SEI).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call