Abstract

This research investigated the effectiveness of radio frequency (RF) heating as a treatment for lead-contaminated soil, assessing its impact through dielectric constant measurements. Using water-soluble lead (II) acetate trihydrate, the study analyzed the impact of RF heating on soil dielectric properties under various soil moisture conditions (high, medium, and low) and electric field strengths (112.5, 150, 225, and 450 kV/m). The results indicated that soil temperature increased with lead concentration, highlighting significant changes in soil thermodynamics. Under high-humidity conditions, temperature increases were more pronounced, suggesting that higher lead concentrations elevate soil temperatures. Moreover, RF heating consistently reduced the dielectric constant as lead concentration increased, which was especially evident at higher electric field strengths. The study found that the soil resistivity approached that of uncontaminated soil, particularly at 450 kV/m electric field strength, with the highest removal rate of 46.154%. This investigation provides valuable insights into the application of RF heating for soil quality improvement in lead-contaminated environments, demonstrating how dielectric properties can reflect those of uncontaminated soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.