Abstract

This paper presents a numerical algorithm technique to detect cracks propagated in concrete beams based on the frequency response curve of the beam determined from vibration testing. Impact tests on simply supported reinforced concrete beams were conducted to measure vibration on the beam. The ICATS software was carried out to capture the Frequency Response Functions (FRFs) data at each load step. Utilizing the FRFs data, a numerical algorithm based on finite different methods was performed to compute the different FRFs between undamage and damage beams based on the mode shape curvature square (MSCS) method. The numerical damage location was defined by subtracting the MSCS undamage to damage of beams. Therefore, the accurate damage location was identified by comparing the numerical and observed experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.