Abstract

Cystatin C is used as an alternative marker instead of, or in combination with creatinine for non-invasive determination of glomerular filtration rates. Advantages advocating in favour of Cystatin C in diagnosis of chronic kidney diseases are the lower variability of its serum level and, particularly, virtual independence on sex, age and muscle mass. However, in order to capitalize, accuracy of measurement has to be in proportion with the predictive power of the marker. Though there are label-free methods available for screening purposes or high-throughput analysis, achieving high levels of reliability and accuracy in quantitative proteomics takes reference to isotope labelled materials. Present routine assays (mainly nephelometry, turbidimetry and ligand-binding assays) are known to leave improvement to be desired in that respect. Absolute quantification based on enzymatic signature-peptides provides a method principle establishing traceability to the International System of Units on the level of primary methods. The kind of technique is capable, by this way, of high accuracy value-assignment to matrix materials needed for calibration of present routine assays, where not completely replacing them. Cystatin C measurement by isotope dilution mass spectrometry is developed in this study with the aim of making available this tool to support diagnostics of kidney function in the same way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.