Abstract

Fluorescence in situ hybridization (FISH) has been proposed for species-specific detection, and viability determination of Cryptosporidium parvum oocysts. FISH-based viability determination depends on rRNA decay after loss of viability. We examined the effects of RNase(s) and RNase inhibitors on FISH of C. parvum. FISH was performed using a 5'-Texas red-labelled DNA oligonucleotide probe at 1 pM microl(-1). Intact and heat-permeabilized oocysts were treated with 1-100 microg ml(-1) RNase. FISH of intact oocysts appeared unaffected by exogenous RNase if this was neutralized before permeabilization. FISH fluorescence of heat-killed oocysts stored in phosphate-buffered saline at room temperature decayed by 1/2 after 55 h, but remained detectable after 6 days. Addition of vanadyl ribonucleoside complex (VRC) extended rRNA half-life of heat-permeabilized oocysts to 155 h. Extended rRNA half-life may result in viability overestimation using FISH. RNase pretreatment before FISH is recommended to destroy residual rRNA in recently killed oocysts. Incorporation of 1-10 mM l(-1) VRC before FISH permeabilization steps should neutralize RNase activity. Elimination of FISH fluorescence of nonviable C. parvum is desirable. Use of RNase and VRC is suggested to reduce numbers of false-positive 'viable' oocysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call