Abstract
In this paper, a design of experiments and a statistical analysis of variance (ANOVA) are performed to determine the parameters that have more influence on the mass flow rate profile in diesel injectors. The study has been carried out using a one dimensional model previously implemented by the authors. The investigation is split into two different parts. First, the analysis is focused on functional parameters such as the injection and discharge pressures, the energizing time and the fuel temperature. In the second part, the influence of 37 geometrical parameters, such as the diameters of hydraulic lines, calibrated orifices and internal volumes, among others, are analysed. The objective of the study is to quantify the impact of small variations in the nominal value of these parameters on the injection rate profile for a given injector operating condition. In the case of the functional parameters, these small variations may be attributed to possible undesired fluctuations in the conditions that the injector is submitted to. As far as the geometrical and flow parameters are concerned, the small variations studied are representative of manufacturing tolerances that could influence the injected mass flow rate. As a result, it has been noticed that the configuration of the inlet and outlet orifices of the control volume, together with the discharge coefficient of the inlet orifice, among a few others, play a remarkable role in the injector performance. The reason resides in the fact that they are in charge of controlling the behaviour of the pressure in the control volume, which importantly influences injector dynamics and therefore the injection process. Variations of only 5% in the diameter of these orifices strongly modify the shape of the rate of injection curve, influencing both the injection delay and the duration of the injection process, consequently changing the total mass delivered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.