Abstract

In this work, an antimony trioxide-modified multi-walled carbon nanotube paste electrode (Sb2O3/CNTPE) was employed for determination of Cu2+ ions by using square wave anodic stripping voltammetry (SWASV) in the presence of 8-hydroxy-7-iodo-5-quinoline sulfonic acid (HIQSA) as a chelating agent. The field emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS) and electrochemical impedance spectroscopy (EIS) methods were applied to estimate the morphology and properties of the modified electrode. Measurements related to SWASV were taken in 0.6 M HCl at −1.0 V versus Ag|AgCl|KCl (3 M) for 90 s (deposition step). After equilibrium time of 15 s, an ASV appeared at 0.0 V versus Ag|AgCl|KCl (3 M) (stripping step). The sensor depicted a fairly linear response for Cu2+ in the concentration range of 2–100 ppb with appropriate detection limit about 0.39 ppb and limit of quantification about 1.3 ppb. The stability of the modified electrode during 7 weeks and its behavior in the presence of some metal ions was evaluated. The practical applicability of the Sb2O3/CNTPE was established on the voltammetric determination of Cu2+ in tap water as a sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.