Abstract

Inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) was used for the accurate determination of copper in coal fly ash samples in the presence of excess titanium, using the reaction of Cu(+) ions with NH(3) in the cell. The method eliminated the effect of polyatomic isobaric interferences at m/z 63 and 65 caused by the formation of (47)Ti(16)O(+), (49)Ti(16)O(+) and (47)Ti(18)O(+) on (63)Cu(+) and (65)Cu(+) by detecting Cu(+) as the product cluster ion Cu(NH(3))(2)(+). As the signal of (63)Cu(NH(3))(2)(+) overlapped with that of (97)Mo(+) which existed in the samples, (65)Cu(NH(3))(2)(+) was detected at m/z 99. The effect of the operating conditions of DRC system was studied in order to obtain the best signal to noise ratio for Cu(NH(3))(2)(+) at m/z 99. The formation of Cu(NH(3))(2)(+) was through the clustering reaction Cu(+)+2NH(3)-->Cu(NH(3))(2)(+) which resulted in the separation of analyte from the interfering oxide. The detection limit for Cu(NH(3))(2)(+) was 0.015 ng mL(-1) as Cu. The method was applied to the determination of copper in NIST SRM 1633a and 1633b coal fly ash reference materials. The precision between sample replicates was better than 2.0% and the analysis results were in good agreement with the certified values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.