Abstract

The use of multiple isotopic ratios and statistical methods can substantially increase the reliability and precision of determining contamination sources and pathways. In this study, contamination sources were differentiated in three subareas in one mine area and geochemical processes were investigated using Cu, Pb, Zn, and S isotopes and positive matrix factorization (PMF). Soil samples downstream of the adit seepages exhibited distinctly higher δ65Cu values than those from other areas. δ65Cu in adit seepages increased substantially from ore sulfides owing to large isotopic fractionation during oxidative dissolution. Although δ65Cu decreased during sulfide precipitation in seepage-contaminated soil, the discrimination of δ65Cu was still valid. Therefore, δ65Cu is particularly useful for differentiating between contamination by sulfides (tailings) and water (adit seepages). Moreover, sulfide precipitation following sulfate reduction was verified by the decreased δ66Zn and δ34S in the soil. In addition, the plot of 208Pb/206Pb versus Pb-1 distinguished contamination sources. Furthermore, PMF analysis confirmed the determination of sources and differentiated between contamination by As- and Cu-enriched tailings. The effect of Cu-enriched tailings further downstream suggested that the lower specific gravity of chalcopyrite compared to that of arsenopyrite affected the distribution of soil contamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.