Abstract

The article proposes a method for processing concrete creep curves based on the nonlinear equation of V.M. Bondarenko. The experimental data of A.V. Yashin is used. The problem of finding rheological parameters and the nonlinearity function is posed as a nonlinear optimization problem. The objective function represents the sum of the squared deviations of the experimental values of the creep strain from the theoretical values for all creep curves for one concrete at different stress levels. The minimum of the objective function is found using the interior point method, the surrogate optimization method, the pattern search method, the genetic algorithm, and the particle swarm method. It has been established that the first of these methods has the greatest efficiency. The proposed approach provides high quality approximation of experimental curves at all stress levels. It is shown that for concrete the nonlinearity of creep deformations is more pronounced than the nonlinearity of instantaneous deformations, and the same function cannot be used to describe these two types of nonlinearity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call