Abstract
A method for simultaneous, nondestructive analysis of aminopyrine and phenacetin in compound aminopyrine phenacetin tablets with different concentrations has been developed by principal component artificial neural networks (PC-ANNs) on near-infrared (NIR) spectroscopy. In PC-ANN models, the spectral data were initially analyzed by principal component analysis. Then the scores of the principal components were chosen as input nodes for the input layer instead of the spectral data. The artificial neural network models using the spectral data as input nodes were also established and compared with the PC-ANN models. Four different preprocessing methods (first-derivative, second-derivative, standard normal variate (SNV), and multiplicative scatter correction) were applied to three sets of NIR spectra of compound aminopyrine phenacetin tablets. The PC-ANNs approach with SNV preprocessing spectra was found to provide the best results. The degree of approximation was performed as the selective criterion of the optimum network parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.