Abstract

Clinical decision-making for risk stratification for possible myocardial infarction (MI) uses high-sensitivity cardiac troponin (hs-cTn) thresholds that range from the limit of detection to several-fold higher than the upper reference limit (URL). To establish a minimum analytical variation standard, we can quantify the effect of variation on the population clinical measures of safety (sensitivity) and effectiveness [proportion below threshold, or positive predictive value (PPV)]. From large datasets of patients investigated for possible MI with the Abbott hs-cTnI and Roche hs-cTnT assays, we synthesized datasets of 1 000 000 simulated patients. Troponin concentrations were randomly varied several times based on absolute deviations of 0.5 to 3 ng/L and relative changes of 2% to 20% around the low-risk threshold (5 ng/L) and URLs, respectively. For both assays at the low-risk thresholds, there were negligible differences in sensitivity (<0.3%) with increasing analytical variation. The proportion of patients characterized as low risk reduced by 30% to 29% (Roche) and 53% to 44% (Abbott). At the URL, increasing analytical variation also did not change sensitivity; the PPV fell by less than 3%. For risk stratification, increased delta thresholds (change between serial troponin concentrations) increased sensitivity at the cost of a decreased percentage of patients below the delta threshold, with the largest changes at the greatest analytical variation. At the low-risk threshold, analytical variation up to 3 ng/L minimally impacted the safety metric (sensitivity) but marginally reduced effectiveness. Similarly, at the URL even relative variation up to 25% minimally impacted safety metrics and effectiveness. Analytical variation for delta thresholds did not negatively impact sensitivity but decreased effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call