Abstract

A simple, rapid, sensitive and high throughput method is described, based on solid-phase disk extraction (SPDE) and gas chromatography-electron capture detection, for the determination of chlorobenzens (CBs) in water samples. The proposed SPDE sample pretreatment method was initially optimized and the optimum experimental conditions were found to be as follows: 500 mL water sample (pH 2.5) extracted and enriched by an Empore 3-stn C18 (octadecyl) SPE disk at flow rate of 5 to 50 mL/min, eluted by 5 mL of acetone and 3 × 5 mL of methylene dichloride. The linearity of the method ranged from 0.02 to 0.4 µg/L for dichlorobenzene isomers, 0.0022-0.044 µg/L for trichlorobenzene isomers, 0.005-0.01 µg/L for tetrachlorobenzene isomers and 0.00025 to 0.005 µg/L for pentachlorobenzenes and hexachlorobenzenes, with correlation coefficients ranging between 0.9991 and 0.9999. The limits of detection were in the low ng/L level, ranging between 0.05 and 4 ng/L. The recoveries of spiked CBs with the external calibration method at different concentration levels in deionized/distilled water, tap water and sea water samples were 99-115, 91-106% and 96-110%, respectively, and with relative standard deviations of 4.5-7.6, 4.2-6.8 and 3.6-6.6% (n = 5), respectively. It is concluded that this method can successfully be applied for the determination of CBs in deionized/distilled water, tap water and sea water samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call