Abstract
A carbon paste biosensor modified with a crude enzymatic extract of the Pleurotus ostreatus fungi as a laccase source is proposed for catecholamine determination in pharmaceutical formulations. This enzyme catalyzes the oxidation of adrenaline or dopamine in the corresponding quinones and the current obtained in the electrochemical reduction of each of the products is related to the concentration of these catecholamines in the sample solution. The effect of the laccase concentration from 0.29 to 1.8 U/mg of carbon paste, pH from 3.0 to 8.0, scan rate from 10 to 40 mV s-1 and potential pulse amplitude from 10 to 60 mV on the differential pulse voltammetric response was investigated. The relative standard deviation was smaller than 1.8% for a 2.8 x 10-4 mol L-1 hydroquinone solution at pH 7.0 (n=10). Recoveries varied from 97.3 to 101% for adrenaline and from 95.8 to 102% for dopamine. The analytical curves were rectilinear in the adrenaline concentration range from 6.0 x 10-5 to 7.0 x 10-4 mol L-1 and 7.0 x 10-5 to 4.0 x 10-4 mol L-1 for dopamine, with detection limits of 7.9 x 10-6 mol L-1 and 9.8 x 10-6 mol L-1, respectively. This biosensor was used for adrenaline and dopamine determinations in pharmaceutical formulations. The results obtained using the proposed biosensor are in close agreement with those obtained using an American Pharmacopoeia procedure at a 95% confidence level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.