Abstract
Hexagonal boron nitride (h-BN) is an important insulating substrate for two-dimensional (2D) heterostructure devices and possesses high dielectric strength comparable to SiO2. Here, we report two clear differences in their physical properties. The first one is the occurrence of Fermi level pinning at the metal/h-BN interface, unlike that at the metal/SiO2 interface. The second one is that the carrier of Fowler-Nordheim (F-N) tunneling through h-BN is a hole, which is opposite to an electron in the case of SiO2. These unique characteristics are verified by I- V measurements in the graphene/h-BN/metal heterostructure device with the aid of a numerical simulation, where the barrier height of graphene can be modulated by a back gate voltage owing to its low density of states. Furthermore, from a systematic investigation using a variety of metals, it is confirmed that the hole F-N tunneling current is a general characteristic because the Fermi levels of metals are pinned in the small energy range around ∼3.5 eV from the top of the conduction band of h-BN, with a pinning factor of 0.30. The accurate energy band alignment at the h-BN/metal interface provides practical knowledge for 2D heterostructure devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.