Abstract

In this study, a sensitive and matrix-effect free analytical method for Cd determination in engine oils and fuel samples by dispersive liquid-liquid microextraction with electrothermal atomic absorption spectrometry has been successfully developed. The extractant solvent used for the microextraction procedure was a magnetic ionic liquid (MIL) (i.e., bis(1-ethyl-3-methylimidazolium) tetrathiocyanatocobaltate (II) [Emim]2[Co(SCN)4]), which presents a paramagnetic property, and allows an easy phase separation using a magnet. In order to eliminate the well-known drawbacks of direct introduction of MIL in the graphite furnace, a back-extraction procedure was performed to transfer the analyte into an aqueous phase. The main experimental factors affecting the extraction of Cd (i.e., amount of sample and MIL, extraction and back-extraction time and concentration and amount of nitric acid) were optimized using a multivariate analysis consisting in two steps: a Plackett-Burman design followed by a circumscribed central composite design. Under optimum conditions (i.e., amount of sample: 6.2 g; amount of MIL: 119 mg; extraction time: 1 min; amount of nitric acid: 200 mg; nitric acid concentration: 1 mol L-1 and back-extraction time: 1 min), the proposed analytical method was validated and successfully used to analyze three real-world samples (i.e., used engine oil, gasoline and diesel). The three samples were spiked at two levels (i.e., 10 and 20 μg kg-1 of Cd for used engine oil and 1 and 3 μg kg-1 of Cd for gasoline and diesel). RSD and recovery values were within the range of 6–11% and 95–110%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.