Abstract

Additive-manufactured aluminum alloy deposits were analyzed using neutron diffraction to characterize the effect of intermediate stress relief anneal heat treatment on bulk residual stresses in the final part. Based on measured interplanar spacing, stresses were calculated at various locations along a single bead, stacked wall deposit. A comparison between an uninterrupted deposited wall and an interrupted, stress-relieved, and annealed deposited wall showed a measureable reduction in residual stress magnitude at the interface with a corresponding shift in stress character into the deposit. This shift changes the interface stresses from purely compressive to partially tensile. The residual stress profile varied along the length of the deposit, and the heat-treatment procedure reduced the overall magnitude of the stress at the interface by 10 through 25 MPa. These results are interpreted in terms of thermal gradients inherent to the process and compared with prior residual stress-characterization studies in additive-manufactured metallic structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call