Abstract

Two non-linear unsteady methods for solving the inverse heat conduction problem are discussed and compared in this paper. The first method is based on the finite element method, uses the variational calculus and the BFGS (Broyden-Fletcher–Goldfarb–Shanno) optimization algorithm. The second is an analytical and numerical method based on the approximation of the solution in the form of a linear combination of Chebyshev polynomials. In numerical tests, the stability of the temperature, heat flux density, and heat transfer coefficient obtained from both methods was analyzed. On the basis of experimental data, oscillations of the measured gas temperature and temperature in the component were analyzed. Oscillations of the gas temperature obtained from the experiment were taken into consideration during tests. The first method to solve the inverse problem was used to determine the boundary conditions for the entire gas nitriding process. As a result, stable values of temperature, heat flux density, and the heat transfer coefficient on the surface of the component under treatment in a real gas nitriding process, so far unpublished, were obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.