Abstract
Raman spectroscopy is a very popular, non-destructive tool for the structural characterisation of carbons. Raman scattering from carbons is always a resonant process, in which those configurations whose band gaps match the excitation energy are preferentially excited. Any mixture of sp3, sp2 and sp1 carbon atoms always has a gap between 0 and 5.5 eV, and this energy range matches that of IR-vis-UV Raman spectrometers. The Raman spectra of carbons do not follow the vibration density of states, but consist of three basic features, the G and D peaks at approximately 1600 and 1350 cm−1 and an extra T peak, for UV excitation, at ∼980–1060 cm−1. We propose to rationalise the vast range of experimental data available in literature at any excitation wavelength by a simple model, which considers the main factors influencing the Raman spectra. The great advantages of multi-wavelength Raman spectroscopy will be clarified by a series of examples. In particular we show how it can be used to probe the structural changes induced by annealing and by nitrogen introduction. UV Raman spectroscopy also probes heteropolar σ bonds in a complementary way to infrared spectroscopy. We demonstrate the direct detection of CH vibrations in hydrogenated DLC samples, SiH and SiC vibrations in amorphous silicon and amorphous silicon–carbon alloys and the easier probe of CN sp bonds in amorphous carbon nitrides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.