Abstract
Total body electrical conductivity (TOBEC) is a noninvasive method for estimating fat free mass (FFM) in live animals. In this study, we have evaluated the use of the Em-Scan SA-3000, which is claimed by the manufacturers to perform better than earlier analysers. Previous studies in rats using these earlier versions of the TOBEC analyser have always used anaesthesia to minimise movement artefacts. As repeated anaesthesia also has the potential to induce artefacts by disrupting food intake, for example, we have also attempted to determine if this TOBEC analyser can be used to predict body composition in conscious adult weight-stable female Wistar rats. A simplified cafeteria diet was used to produce large variations in body composition (40–350 g fat/carcass) and a full chemical body composition analysis was performed to generate a TOBEC calibration equation. The TOBEC parameter was more strongly correlated to FFM ( r 2=.785) than it was to body weight ( r 2=.669) or other body composition parameters. Using the TOBEC calibration equation to predict fat mass on these data, there was an excellent correlation with the value obtained by chemical analyses ( r 2=.952, slope=0.958). To determine if the TOBEC calibration equation derived from this calibration study would then be useful for the routine estimation of body composition an additional, validation study was performed. This validation study was performed 6 months later, used an independent group of obese female Wistar rats and was undertaken by different TOBEC operators. This validation study, again, showed a good correlation between the TOBEC- and chemical-derived fat mass ( r 2=.918, slope=1.003) indicating stability of the calibration equation with time and independence from operator. We therefore conclude that it is possible to meaningfully estimate body fat changes in conscious rats using this TOBEC analysis system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.